
Company

Logo

PL

C Pascal
ML Scheme

Smalltalk C++
Prolog

Theory of Programming Languages

ML

Chapter 3 Defining Functions

Moonkun Lee

http://rts.chonbuk.ac.kr/home.html

ML

2014-03-24

PL, ML

2

Outline

 Functions

 Invoking Functions

 Patterns

 General Form of Function Declarations

 Local Environments

ML

2014-03-24

PL, ML

3

Functions

 Keyword fun.

 Function name and formal parameters.

 =

 Expression giving the value returned by the function.

fun cube(x:int) = x*x*x;

val cube = fn : int -> int

ML

2014-03-24

PL, ML

4

Note description of the value of cube

 It is described as a “fn” (function).

 Its type is given as int -> int. The -> means

“function from...to.” I.e., “cube is a function from
integers to integers.”

 Note inconsistency: for a nonfunction, ML responds
with its value; for a function, the type is given (but
how could ML describe the “value” of a function
saved? By repeating the code?).

ML

2014-03-24

PL, ML

5

To avoid “overloading” the * operator, we have to
tell ML that x is an integer.

 The colon operator attaches the type int to x.

 Beware: the colon has very low precedence, so
parentheses surrounding the variable and the type
are needed.

 Otherwise, the parentheses around the parameter
of cube are optional; the following is legal:

fun cube x = (x:int)*x*x;

ML

2014-03-24

PL, ML

6

Invoking Functions

Much of ML's power comes from its ability to describe
functions as a series of patterns that its input
arguments might meet with an expression
describing the result in each case.

fun member(x, nil) = false

 | member(x, y::ys) =

 if x=y then true

 else member(x, ys);

val member= fn : "a * "a list -> bool

ML

2014-03-24

PL, ML

7

 The first pattern that matches the input “wins” and
determines the result.

fun member(x, nil) = false

 | member(x, y::ys) =

 if x=y then true

 else member(x, ys);

val member= fn : "a * "a list -> bool

ML

2014-03-24

PL, ML

8

 Note type: input (domain) is a pair consisting of an
element of some type ”a and a list of elements of
that type. Output (range) is a boolean.

 The double apostrophes in the type name indicates it is an

equality type, one for which “=” must make sense.

ML

2014-03-24

PL, ML

9

 Warning: it is tempting to write the pattern
member(x,x::xs) to catch the case where the
element x is found at the head.

 But we may not use a variable twice in a pattern.

fun fact 0 = 1

 | fact n = n*fact(n-1);

val fact = fn : int -> int

ML

2014-03-24

PL, ML

10

 Note that a pattern can be an integer constant.

 Because function application has higher precedence
than binary operators like -, we need parens in
fact(n-1) although they are not needed in fact n.

ML

2014-03-24

PL, ML

11

(Fairly) General Form of Function Declarations

 Keyword fun.

 One or more expressions of the form “pattern =
expression,” separated by vertical bars.

 Pattern = function name + parameters. Each parameter may
be an expression.

 The expression may use the variables that appear in the
parameters.

ML

2014-03-24

PL, ML

12

Local Environments

the let...in...end construct allows us to make local,

or temporary declarations using val or fun.

 These declarations go away after the end.

Example: The power set of a set S is the set of all
subsets of S. If sets are represented by lists, then
the power set of a set of integers is of type int
list list.

ML

2014-03-24

PL, ML

13

The following is a useful function that prepends x to
each list on a list of lists L .

fun pre(x,nil) = nil

 | pre(x,L::Ls) = (x::L)::pre(x,Ls);

val pre = fn : 'a * 'a list list  'a list list

pre(1, [[2,3], [4,5], []]);

val it = [[1,2,3], [1,4,5], [1]] : int list list

ML

2014-03-24

PL, ML

14

The following power-set function uses pre and
computes the power set of the tail (a set with one
fewer element) recursively. It uses that power set
twice, once as-is and once with the head element
prepended.

fun pow([]) = [[]]

 | pow(x::xs) =

 let

 val ps = pow(xs);

 in

 ps @ pre(x,ps)

 end;

val pow = fn : 'a list -> 'a list list

pow(["foo", "bar"]);

val it = [[], ["bar"], ["foo"], ["foo","bar"]] :
string list list

ML

2014-03-24

PL, ML

15

 In general, a list of declarations, optionally ended by
semicolons, may appear between let and in.

 Common errors: omitting val or end.

ML

2014-03-24

PL, ML

16

Variables may also be defined by a pattern – see split
on p. 80, EMLP.

fun split(nil) = (nil, nil)

 | split([a]) = ([a], Nil)

 | split(a::b::cs) =

 let

 val (M, N) = split(cs)

 in

 (a::M, b::N)

 end;

val split = fn: ‘a list -> ‘a list * ‘a list

ML

2014-03-24

PL, ML

17

Example: Given a list, produce the minimum and
maximum of the list of integers.

 Note the result is a pair; most languages only let you
produce pointers to structures such as pairs.

ML

2014-03-24

PL, ML

18

fun minmax([x:int]) = (x,x)

 | minmax(x::xs) =

 let

 val (low, high) = minmax(xs);

 in

 if x<low then (x,high)

 else if x>high then (low,x)

 else (low,high)

 end;

std in:2.1-7.3 Warning: match nonexhaustive

 (x : int  :: nil) ...

 x :: xs  ...

val minmax = fn : int list  int * int

minmax([3,4,5,1,6,2,7,5]);

val it = (1,7) : int * int

No pattern for
an empty list!

ML

2014-03-24

PL, ML

19

 Notice that the pattern [x:int] (or just [x])

matches only a list of length 1 and binds x to the one
element of that list.

 ML correctly discovers that minmax has no pattern
that covers the empty list.
 Since minmax makes no sense on [], we should handle this

problem with an “exception” as in Ch. 8.

